by Jack LewisRunning on Lead
Considerable ballyhoo surrounded the introduction of tetraethyl lead in the early 1920s. Iodine, aniline, selenium, and other substances had all fallen by the wayside in the frantic search for a fuel additive that would improve engine performance and reduce engine knock.
Then in December 1921, three General Motors engineers -- Charles Kettering, Thomas Midgeley, and Thomas Boyd -- reported tremendous success with their first test of tetraethyl lead. Through the Ethyl corporation, then a GM subsidiary, GM quickly began touting this lead compound as the virtual savior of the American automobile industry.
The discovery was indeed extremely important. It paved the way for the development of the high-power, high-compression internal combustion engines that were to win World War II and dominate the U.S. automotive industry until the early 1970s.
Unfortunately, the use of tetraethyl lead created almost as many problems as it solved. The first danger sign was the mysterious illness that forced Thomas Midgeley to spend weeks convalescing in the winter of 1923. Midgeley had been experimenting rather recklessly with the various methods of manufacturing tetraethyl lead, and he did not at first realize just how dangerous the substance was in its concentrated liquid state.
The deadliness of tetraethyl lead was sadly confirmed in the summer of 1924. Workers engaged in producing the additive fell sick and died at several refineries in New Jersey and Ohio. Banner headlines greeted each new fatality until a total of 15 workers had lost their lives -- and their minds.
Terrifying rumors circulated about the madness that had put some of the doomed into straitjackets before it put them six feet under. It was not long before journalists were calling leaded fuel "loony gas." Ironically, the gas in question was routinely dyed "a wine color" that made it reminiscent in more ways than one of something served at a Roman orgy.
In May 1925, the Surgeon General temporarily suspended the production and sale of leaded gasoline. He appointed a panel of experts to investigate the recent fatalities that had "occurred in the manufacture and mixing of the concentrated tetraethyl lead." The panel was also asked to weigh "the possible danger" that might arise "from...wide distribution of a lead compound" through its sale as a gasoline additive.
Industry dominated the Surgeon General's investigatory committee, which included only one genuine environmental visionary, Dr. Alice Hamilton of Harvard University. The Coolidge Administration gave the panel just seven months to design, run, and analyze its tests.
The committee's final report, published in June 1926, complained of the time constraints under which it had been forced to operate. Seven months was "not sufficient," argued the panel, "to produce detectable symptoms of lead poisoning" in experimental subjects because of the very slow gestation of that toxicological syndrome.
Nevertheless, the Surgeon General's panel ruled that there were "no good grounds for prohibiting the use of ethyl gasoline...as a motor fuel, provided that its distribution and use are controlled by proper regulations." The coming decades of Depression, total war, and post-war boom were hardly conducive to the implementation of "proper regulations" for leaded gasoline. Indeed, no compulsory standards were set for the industry until the early 1970s when EPA began its long, hard struggle to phase down lead levels in U.S. gasoline.
Voluntary Standard
In December 1973, EPA issued regulations calling for a gradual reduction in the lead content of the total gasoline pool, which includes all grades of gasoline. The restrictions were scheduled to be implemented starting on January 1, 1975, and to extend over a five-year period. The average lead content of the total gasoline pool of each refinery was to be reduced from the level of approximately 2.0 grams per total gallon that prevailed in 1973 to a maximum of 0.5 grams per total gallon after January 1, 1979. Litigation was to postpone implementation of this phasedown for two years.
Dawn of the Catalytic Converter
Starting with the 1975 model year, U.S. automakers responded to EPA's lead phasedown timetable by equipping new cars with pollution-reducing catalytic converters designed to run only on unleaded fuel. Fittingly, a key component of these catalysts that were to be the undoing of lead was that noblest of noble metals, platinum.
On the basis of all that is known about the history of lead and its adverse effects on human health, it is impossible not to welcome EPA's latest lead phasedown initiative as well as the agency's decision to consider banning lead altogether from U.S. gasoline