Neurology Anatomy Physiology
December 14, 2021
Contents
neurons and Nervesneurotransmitter
The Brain & Spinal Cord
Cranial Nerves
Peripheral Nervous System
Autonomic Nervous System
Senses: Eye diagrams, Hearing, Smell, Taste, Taste & Tongue Sensation, Balance
Memory , Memory types, Creation of Memory
Higher Functions
Altered States
Memory
Working Memory
- Working Memory -Most of our memories are fleeting because few of the many experiences we have in the course of an average day are remembered for very long, nor do they need to be. Transient memories are absolutely essential to the process of understanding the meaning of events as they occur in the present. This type of very short-term memory for things being experienced now is known as working memory; it allows you to comprehend what you are reading or to figure out the meaning of what has just been said to your in a conversation. Working memory can be thought of as a low capacity information reservoir that is always full, sensations flowing into it continuously at about the same rate that they are forgotten. Some of the information held in short-term storage may be important enough to be remembered for a long time and must therefore be transferred to a more stable form of storage, which is represented by far more robust
alterations in the brain's chemical and physical make-up in the form of synaptic connections. It is not necessarily for an important experience to trigger the formation of long-term memories, other factors such emotion, practice, and rehearsal also facilitate the transformation. Experiments show that in all cases the most important underlying distinction between the short- and long-term memory formation is that the latter requires a dialogue between synapses and genes and the former does not.
Figure 25 Working Memory
[view large image]- The working memory itself is located in the prefrontal cortex. As experimental techniques became refined, it has become clear that there is no rigid dividing line between a memory and a thought. A model of working memory has been developed to combine perceptions, memories and concepts together, and consists of three parts:
- Phonological loop - Memory in this area (see Figure 25) enables us to remember sequences of approximately seven digits, letter, or words. The language areas of the brain are mainly in the left hemisphere, around and above the ear. The language loop start with hearing words in the auditory cortex and/or reading words in the visual cortex. Perception of language results from the convergence of auditory and visual information in Wernicke's area. Expression of language is controlled by Broca's area; while the angular gyrus is concerned with meaning.
- Visual-spatial scratch pad - It is like a sort of inner eye, which receives and codes data into visual or spatial images. For example, it comes into play when we need to remember where we were on a page when we start reading a book again. Functional imaging suggests that this complex structure represents the "what" and "where" in short-term memory (see Figure 25).
- Central executive - This most important yet least well understood component of the working memory model, is postulated to be responsible for the selection, initiation, and termination of processing routines (e.g., encoding, storing, retrieving). It is believed that this component coordinates information from a number of sources, directs the ability to focus and switch attention, organizes incoming material and the retrieval of old memories and combines information arriving via the other two temporary storage systems. It performs various tasks such as reasoning or doing mental arithmetic - rather like the RAM (Radom Access Memory) of a computer.
- Nondeclarative memory - Nondeclarative memory includes skill learning, implicit learning, priming, simple classical conditioning, and habituation. These forms of learning are similar in that it is experience which changes the neural makeup, and the conscious access to past episodes is not essential for the formation of these memories. Implicit memory is not flexible and does not allow for the recombination of learned information. Nondeclarative memory does not require the hippocampus or related structures. Instead, the implicit learning of skills and habits depends on the neostriatum (basal ganglia and its connections to the frontal lobes). The conditioning simple skeletal muscle reactions depends on the cerebellum. The amygdala is
Figure 26 Nondeclarative Memory
[view large image]
essential for emotional conditioning. Nondeclarative memory can be classified to five main groups:
- Procedural memory - It is the repository of such skills as handwriting or driving. These skills are essential part of our memory store, but it is difficult to describe the "know-how" in words. In this sense the memory is said to be implicit or non-declarative (Figure 26); you just cannot explain how to ride a bicycle. The skills may be difficult to acquire, but once learnt they are never forgotten, even without occasional practice. Thus it seems that the know-ledge or information required for the execution of very complex motor routines or procedures is somehow laid down in a robust permanent memory store. The parts of the brain involved in the acquisition of complex motor skills are the cerebellum and putamen (see Figure 24). Deeply ingrained habits are stored in the caudate nucleus.
- Classical conditioning - Along with motor skills, conditioning is part of non-declarative memory. The desire for food at a particular time of day - regardless of whether hungry or not - is one example of such conditioning. A classical example is to associate the ring of a bell to food when feeding a dog. After repeating the training many times, the dog shows salivation at the ring of the bell even without food (see Figure 26).
- Fear memory - Recent study in delivering shocks to mice suggests that fear memory does not occur immediately after a painful event; rather, it takes time for the memory to become part of our consciousness. The initial event activates NMDA receptors - molecules on cells that receive messages and then produce specific physiological effect in the cell - which are normally quiet but triggered when the brain receives a shock. Over time, the receptors leave their imprint on brain cells. A phobia is an excessive or unreasonable fear of an object, place or situation. Examples include fears of specific things such as insect, snake, mouse, and flying. It seems that people can learn to suppress a fright reaction by repeatedly confronting, in a safe manner, the fear-triggering memory or stimulus. It is found that for specific phobias, up to 90% of people can be cured through such exposure therapy.
- Nonassociative memory - Nonassociative memory includes two forms of learning called habituation and sensitization. Habituation is defined as a decreased in response to a repeated stimulus such as a certain odor. On the other hand, sensitization is an increased responsiveness such as more sensitive in touching a cut in the skin. Nonassociative learning involves reflex pathways in the spinal cord and elsewhere.
- Remote memory - The memory of events that occurred in the distant past is referred to as remote memory. The underlying anatomy of remote memory is poorly understood, in part because testing this type of memory must be personalized to a patient's autobiographical past. What is known is that, like semantic memory, remote memory eventually becomes independent of the hippocampus. One memory model shows a linear representation of how experience is processed as memory: Stimulus Sensory Registration Attention Short Term Memory Consolidation - Retrieval Long Term Memory Remote Memory. At the stage of sensory registration, there is a matching/assigning of the pattern to a meaning. Short-term memory is temporary and is limited in space. If short-term memory is not repeated, the information is lost fairly quickly. Long term memory is consolidated and stored throughout the nervous system. Remote memories represent the foundation memories upon which more recent memories are built. Since early acquired information is the foundation for new memories and may be linked to many more new memories, such memory is less subject to change and/or loss. Similar to the short-term memory, the remote memories are not usually affected by aging.
Continued to declarative memory
Powered by cidpusa.org
- Temporal arteritis
- renal arteritis
- female strokes
- natural makeup
- Hepatitis
- Noise in artery
- breast
- Cbreast chemicals
- mammogram
- strokes
- Bra
- urine
- Bhudda
- Calcium
- D Vitamin
- Amyloid
- spinal nerves
- Green tea
- Day break
- Homeopathy
- renal failure
- Cholestrol
- Vasculitis
- Clay baths
- Steaming Sand Baths
- Coconut oil Benefits
- Deodorants cancer
- Toxic Lipstick
- Niacin deficiency
- Vitamin -D
- Vitamin-C
- Vitamin-E
- Spiritual illness
- Names of Allah
- ACV
- Healthy Oils
- Feet Home
- Beauty Tips for Women
- Celiac disease
- Right Fat Diet
- Apple juice
- Vinegar Benefits
- Supplements
- Cupping
- Alzheimers
- CMT neuropathy